程中的光漂白影响。这种设计还消除了图像重建时烦琐的图案方向匹配过程,使系统能以最高每秒1697帧的速度进行单帧滚动重建,让那些以往难以捕捉的高速生命动态无法逃过镜头的追踪。
为了确保新技术的成像质量,研究团队在光的“姿态”——偏振上做足了文章。他们突破常规,没有使用常见的角向偏振光,而是创新性地采用了径向偏振策略,将对微小细节(高频信息)的捕捉能力提升到与传统2D-SIM相当的水平。同时,团队自主研发了一套AI重建算法,如同为系统装上了强大的降噪“滤镜”,显著增强了在干扰环境下提取清晰图像的稳健性。
3I-SIM的威力在实验中得到了全面展现。席鹏介绍,面对神经元生长锥这类极为敏感、极易被强光损伤的结构,新技术实现了长达13小时、连续拍摄超10万帧的超分辨成像,如同为生命活动拍摄了一部不间断的微观高清纪录片。对于细胞内那些转瞬即逝的微弱信号,比如内质网附近肌动蛋白的瞬间活动,3I-SIM展现出了出色的高速捕捉能力。当切换到高速模式时,其高达1697帧每秒的拍摄能力,甚至能清晰定格内质网环状结构闭合过程中的瞬时波动。
席鹏团队将这项突破性技术同步开源,公开了涵盖硬件设计、软件控制、重建算法以及深度学习模型在内的完整资源包,并配套提供了宝贵的实验数据集。席鹏说:“这种开放共享的设计理念,使全球科研团队能以较低的成本和门槛进行搭建与升级,轻松迈入新一代活细胞超分辨成像的研究领域。” |